函数教案6篇

时间:
dopmitopy
分享
下载本文

教案中应包含多种教学方法,以适应不同学生的学习风格,包含教学目标、流程和评价方式的文本就是教案,能为教学提供清晰指引,​,以下是58汇报网小编精心为您推荐的函数教案6篇,供大家参考。

函数教案6篇

函数教案篇1

教学目标

①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。能分清实例中的常量与变量,了解自变量与函数的意义。

②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。

③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情。在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。

教学重点与难点

重点:函数概念的形成过程。

难点:正确理解函数的概念。

教学准备

每个小组一副弹簧秤和挂件,一根绳子。

教学设计

提出问题:

1。汽车以60千米/时的速度匀速行驶。行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s:

t(小时) 1 2 3 4 5

s(千米)

2。已知每张电影票的售价为10元。如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

3。要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积s的式子表示圆半径r?

注:(1)让学生充分发表意见,然后教师进行点评。

(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。

动手实验

1。在一根弹簧秤上悬挂重物,改变并记录重物的质量,

观察并记录弹簧长度的变化,填入下表:

悬挂重物的质量m(kg)

弹簧长度l(cm)

如果弹簧原长10cm,每1kg重物使弹簧伸长0。5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

2。用10dm长的绳子围成矩形。试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)。设矩形的长为xdm,面积为sdm2,怎样用含x的式子表示s?

注:分组进行实验活动,然后各组选派代表汇报。

通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。

探究新知

(一)变量与常量的概念

1。在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量。

2。请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。

3。举出一些变化的实例,指出其中的变量和常量。

注:分组活动。先独立思考,然后组内交流并作记录,最后各组选派代表汇报。

培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。

(二)函数的概念

1。在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

师生分析得出:上面的每个问题和实验中的两个变量互相联系。当其中一个变量取定一个值时,另一个变量就有惟一确定的值。

2。分组讨论教科书p。7 “观察”中的两个问题。

注:使学生加深对各种表示函数关系的表达方式的印象。

3。一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值。例如在问题1中,时间t是自变量,里程s是t的函数。t=1时,其函数值s为60,t=2时,其函数值s为120。

同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

在人口统计表中,年份x是自变量,人口数y是x的函数。当x=1999时,函数值y=12。52。

巩固新知

下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

1。右图是北京某日温度变化图

2。如图,已知菱形abcd的对角线ac长为4,bd的长在变化,设bd的长为x,则菱形的面积为y= ×4×x

3。国内平信邮资(外埠,100克内)简表:

信件质量m/克 o邮资y/元 o。80 1。60 2。40

注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法。

总结归纳

1。常量与变量的概念;

2。函数的定义;

3。函数的三种表示方式。

注:通过总结归纳,完善学生已有的知识结构。

布置作业

1。必做题:教科书p。18 习题11。1第1题。

2。选做题:教科书p。18 习题11。1第2题。

3。备选题:

(1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

③14、15、16日的日平均温度有什么关系?

④点a表示的是哪天的日平均温度?大约是多少度?

⑤说说这一周的日平均温度是怎样变化的。

(2)如右图所示,梯形上底的长是x,下底的长是15,高是8。

①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数。

②用表格表示当x从10变到20时(每次增加1),y的相应值。

③当x每增加1时,y如何变化?说说你的理由。

④当x=0时,y等于多少?此时它表示的是什么?

(3)研究表明,土豆的'产量与氮肥的施用量有如下关系:

施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量(吨/公顷) 15。18 21。36 25。72 32。29 34。03 39。45 43。15 43。46 40。83 30。75

①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数。

②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由。

④简单说一说氮肥的施用量对土豆产量的影响。

设计思想

变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃。因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律。遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力。同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题。还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人。

函数教案篇2

一、教学目的

1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

二、教学重点、难点

重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

三、教学过程

复习提问

1.在下列函数中,哪些是一次函数?哪些是正比例函数?

(1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。

2.什么是一无二次方程?

3.怎样用找点法画函数的图象?

新课

1.由具体问题引出二次函数的定义。

(1)已知圆的面积是scm2,圆的.半径是rcm,写出空上圆的面积s与半径r之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是lm,写出这个矩形的面积s(m2)与这个矩形的一边长l之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

解:(1)函数解析式是s=πr2;

(2)函数析式是s=30l—l2;

(3)函数解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例启发学生归纳出:

(1)函数解析式均为整式;

(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

函数教案篇3

一、基础知识回顾:

1、仰角、俯角 2、坡度、坡角

二、基础知识回顾:

1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,那么相邻两棵树间的斜坡距离为 米

2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆高度为 米(保留根号)

3、如图:b、c是河对岸的两点,a是对岸岸边一点,测得∠acb=450,bc=60米,则点a到bc的距离是 米。

3、如图所示:某地下车库的入口处有斜坡ab,其坡度i=1:1.5,

则ab= 。

三、典型例题:

例2、右图为住宅区内的两幢楼,它们的高ab=cd=30米,两楼间的距离ac=24米,现需了解甲楼对乙楼采光的影响,当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?

例2、如图所示:在湖边高出水面50米的山顶a处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志p处的仰角为450,又观其在湖中之像的俯角为600,试求飞艇离湖面的高度h米(观察时湖面处于平静状态)

例3、如图所示:某货船以20海里/时的速度将一批重要货物由a处运往正西方的b处,经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由a向北偏西600方向移动,距离台风中心200海里的圆形区域(包括边界)均会受到影响。

(1)问b处是否会受到台风的影响?请说明理由。

(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?

(供选数据:=1.4 =1.7)

四、巩固提高:

1、 若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高 米。

2、如图:a市东偏北600方向一旅游景点m,在a市东偏北300的公路上向前行800米到达c处,测得m位于c的北偏西150,则景点m到公路ac的距离为 。(结果保留根号)

3、同一个圆的内接正方形和它的外切正方形的边长之比为( )

a、sin450 b、sin600 c、cos300 d、cos600

3、如图所示,梯子ab靠在墙上,梯子的底端a到墙根o的距离为2米,梯子的顶端b到地面的距离为7米,现将梯子的'底端a向外移动到a,使梯子的底端a到墙根o的距离等于3米,同时梯子的顶端b下降至b,那么bb( )(填序号)

a、等于1米b、大于1米c、小于1米

5、如图所示:某学校的教室a处东240米的o点处有一货物,经过o点沿北偏西600方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。

(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?

(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的长度(只考虑声音的直线传播)

函数教案篇4

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

创设情境,揭示课题

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在r上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

探究新知

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的`解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为r

2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

函数教案篇5

一、教材的地位和作用

本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

(一)教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

2、能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

(二)教学重点、难点

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

二、学情分析

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学方法

我采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

四、教学设计

一、设疑,导入新课(2分钟)

师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

生1:函数的解析式都是用自变量的`一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

这节课让我们一起来研究 一次函数的图象。(板书)

二、自主探究小组交流、归纳问题升华:

1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)

用描点法作出下列一次函数的图象。

(1) y= 0.5x (2) y= 0.5x+2

(3) y= 3x (4) y= 3x + 2

师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?

生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k0),也可以称为直线y=kx+b(其中k、b为常数,k0)。(板书)

师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比例函数图象经过原点。

小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

师出示幻灯片3(使学生再一次加深印象)

师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k0)的图象直线,你认为有没有更为简便的方法?

(一边思考,可以和同桌交流)(2分钟)

生1:用3个点。

生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

师:我们都认为画一次函数图象,只过两个点画直线就行。

(幻灯片4:师,动画演示用两点法画一次函数的过程)

师:做一做,请你用两点法在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)

师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。这样找的坐标都是整数。

组2:我们组认为尽量都找整数。

组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(3,0)

组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

师:同学们说的都很好。我觉得可以根据情况来取点。

2、师:我们现在已经用:两点法把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察学生回答)(3分钟)

①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

生1:①y=0.5x与y=0.5x+2;两直线平行。

生2:②y=3x与y=3x+2;两直线平行。

生3:③y=0.5x与y=3x;两直线相交。

生4:④y=0.5x+2与y=3x+2;两直线相交。

师:其他同学有没有补充?

生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

师:问(2),直线y=kx+b(k0)中常数k和b的值对于两个函数的图象的位置关系平行或相交,有没有影响?说说你的看法。(5分钟)

(学生自主探究小组交流、归纳师生共同总结)

组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。

生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?

组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。

组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。

师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!

师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)

生:重合。

师:老师考一考你,有没有信心?

生:有。

师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?

①直线y=-2x-1与直线y=-2x+5; ②直线y=0.6x-3与直线y=-x-3。

生1:①两直线平行。②两直线相交,交点是(0,-3)。

生2:①两直线平行。②两直线相交,交点是(0,-3)。

师:一次函数的图象都是直线,它们的形状都 ,只是位置 。

问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。你试试看。(自主探索同桌交流)(3分钟)

生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。

生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。

生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。④y=0.5x+2与y=3x+2。通过旋转能得到y=3x+2。

师:同学们规律找得都很好,我们这节课只研究平移。

问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 (向上或向下),平行移动 单位得到y=0.5x+2?组②呢?(5分钟)

(学生动力操作尝试小组交流归纳小组汇报)

组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。

组2:直线y=3x向上平移2个单位能得到直线y=3x+2。

组3:直线y=3x+2向下平移2个单位能得到直线y=3x。

生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。

生5:老师,我们组发现直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。在这个过程中,都是0.5,却加上了个2。

师:(同学们说的都很好,生5的发现更好,)

师:出示幻灯片7,然后按来通过动画演示平行移动的过程。

问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)

生1:k值不变,b值变化。

生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。

师:出示幻灯片7上的小规律。

做一做:(独立完成小组交流师生总结)(4分钟)

(1)将直线y= -3x沿 y轴向下平移2个单位,得到直线( )。

(2)直线y=4x+2是由直线y=4x-1沿y轴向( )平移( )个单位得到的。

(3)将直线y=-x-5向上平移6个单位,得到直线( )。

(4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线( )。

组1汇报结果。

师:在这些问题中还有没有需要老师帮忙解决的?

生:没有。

三、你能谈谈你这节课的收获吗?(2分钟)

生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k0)

我还学会了用两点法画一次函数的图象。

生2:我觉得学习一次函数,既离不开数,也离不开图形。

生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。

生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。

四、测一测:(6分钟)

师:老师觉得你们学的不错,你们认为自己学的怎么样?

生:好

师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的小组?

师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)

一、填空:1、一次函数y=kx+b(k0)的图象是( ),若该函数图象过原点,那么它是( )。

2、如果直线y=kx+b与直线y=0.5x平行,且与直线y=3x+2交于点(0,2),则该直线的函数关系式是( )。

3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是( )

4、直线y=-2x+1与直线y=-2x-1的关系是( ),直线y=-x+4与直线y=3x+4的关系是( )。

5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是( )。

二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )

a、交于同一个点 b、互相平行

c、有无数个不同的交点 d、交点的个数与k的具体取值有关

7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )

a、交于同一个点 b、互相平行的直线

c、有无数个不同的交点 d、交点个数的多少与b的具体取值有关

在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。

师:看完之后,统计出其小组的成员的成绩以及平均分数,就是该小组的成绩。(老师对优秀个人和小组给予表扬!)

师:同学们,个人更正错题,可以小组帮助,也可以请老师帮助。

师给予学生一定的时间,问:同学们对于这节课还有没有疑问?

生:没有。

四、作业:

在同一坐标系中画出下列函数的图象,并说出它们有什么关系?

(1)y=2x与y=2x+3

(2)y=-x+1与y=-3x+1

五、课外延伸:

直线y=0.5x沿x轴向 (向左或向右),平行移动 个单位得到直线y=0.5x+2。

六、教后反思:

在本节课的教学中,我坚持以学生为主体,采用自主探究小组合作、交流问题升华的教学模式。既注重学生基础知识的掌握,又重视学生学习习惯、自主探究、合作学习能力的培养,同时每一个问题都向学生渗透数学形结合的数学思想。每一个问题的解决我都坚持做到:给学生自主探究问题的机会;在学生想展示自己的做法时,给学生充足的时间让他们去合作交流当学习达到高潮时,引导学生将问题延伸,升华思想;最后,精心设计问题,拓宽学生知识面,培养创造性思维。

函数教案篇6

一、内容和内容解析;

1、内容:人教版八上第十四章一次函数14.22(2)一次函数的图像

2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

二、目标和目标解析

1、教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

知识目标

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

2、教学重点、难点

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

三、教学问题诊断分析

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

四、教学支持条件分析

恰当运用现代技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

五、教学过程设计

(一)、设疑,导入新课(2分钟)

通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 一次函数的图象。(板书课题)

函数教案6篇相关文章:

分类教学教案6篇

认识毫米教案6篇

美术《苹果》教案6篇

小班《眼睛》教案6篇

古诗梅教案6篇

大班睡觉教案6篇

雪花活动教案6篇

认识整点教案6篇

屈原教案6篇

大班认识数字6到10教案6篇

函数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
82298